79 research outputs found

    Development and Applications of Similarity Measures for Spatial-Temporal Event and Setting Sequences

    Get PDF
    Similarity or distance measures between data objects are applied frequently in many fields or domains such as geography, environmental science, biology, economics, computer science, linguistics, logic, business analytics, and statistics, among others. One area where similarity measures are particularly important is in the analysis of spatiotemporal event sequences and associated environs or settings. This dissertation focuses on developing a framework of modeling, representation, and new similarity measure construction for sequences of spatiotemporal events and corresponding settings, which can be applied to different event data types and used in different areas of data science. The first core part of this dissertation presents a matrix-based spatiotemporal event sequence representation that unifies punctual and interval-based representation of events. This framework supports different event data types and provides support for data mining and sequence classification and clustering. The similarity measure is based on the modified Jaccard index with temporal order constraints and accommodates different event data types. This approach is demonstrated through simulated data examples and the performance of the similarity measures is evaluated with a k-nearest neighbor algorithm (k-NN) classification test on synthetic datasets. These similarity measures are incorporated into a clustering method and successfully demonstrate the usefulness in a case study analysis of event sequences extracted from space time series of a water quality monitoring system. This dissertation further proposes a new similarity measure for event setting sequences, which involve the space and time in which events occur. While similarity measures for spatiotemporal event sequences have been studied, the settings and setting sequences have not yet been considered. While modeling event setting sequences, spatial and temporal scales are considered to define the bounds of the setting and incorporate dynamic variables along with static variables. Using a matrix-based representation and an extended Jaccard index, new similarity measures are developed to allow for the use of all variable data types. With these similarity measures coupled with other multivariate statistical analysis approaches, results from a case study involving setting sequences and pollution event sequences associated with the same monitoring stations, support the hypothesis that more similar spatial-temporal settings or setting sequences may generate more similar events or event sequences. To test the scalability of STES similarity measure in a larger dataset and an extended application in different fields, this dissertation compares and contrasts the prospective space-time scan statistic with the STES similarity approach for identifying COVID-19 hotspots. The COVID-19 pandemic has highlighted the importance of detecting hotspots or clusters of COVID-19 to provide decision makers at various levels with better information for managing distribution of human and technical resources as the outbreak in the USA continues to grow. The prospective space-time scan statistic has been used to help identify emerging disease clusters yet results from this approach can encounter strategic limitations imposed by the spatial constraints of the scanning window. The STES-based approach adapted for this pandemic context computes the similarity of evolving normalized COVID-19 daily cases by county and clusters these to identify counties with similarly evolving COVID-19 case histories. This dissertation analyzes the spread of COVID-19 within the continental US through four periods beginning from late January 2020 using the COVID-19 datasets maintained by John Hopkins University, Center for Systems Science and Engineering (CSSE). Results of the two approaches can complement with each other and taken together can aid in tracking the progression of the pandemic. Overall, the dissertation highlights the importance of developing similarity measures for analyzing spatiotemporal event sequences and associated settings, which can be applied to different event data types and used for data mining, sequence classification, and clustering

    Localization of Expansin Expression During Adventitious and Lateral Rooting in Response to Auxin in Loblolly Pine

    Get PDF
    Loblolly Pine is the most important and widely cultivated timber species in the southern United States. Due to its fast growth, it is extensively planted for lumber and pulpwood. Vegetative propagation will enhance gains from genetic improvement of tree species. Rooted-cutting is at present the most reliable non-somatic embryogenesis method for cloning specific genotypes. However, an abrupt decline of adventitious rooting capacity has hindered the application of vegetative propagation in loblolly pine. Unraveling the rooting mechanism may facilitate a way to overcome this barrier. Regulation of lateral and adventitious root formation by auxin has been demonstrated through the application of exogenous auxin to roots. Natural lateral root initiation may depend on the localization and redistribution of IAA at the root tip. We studied spatial and temporal responses of lateral root formation to exogenous NAA (1- naphthaleneacetic acid) on the primary roots of loblolly pine seedlings. A significant increase in the frequency and the growth of lateral root primordium (LRP) in response to NAA pulses could be detected at 24 and 48 h. The region 0.5-2.0 cm behind from root tip responds to auxin treatments, but the most responsive region is 0.5-1.5 cm with the largest number of LRPs at both 24 and 48 h. Four poles of primary xylem are often seen in loblolly pine roots. Positioning of successive LRP formation in a given vascular pole is not random. The probability that the next LRP will develop in the same file is nearly 0. Treatment with an exogenous pulse of NAA increases the probability that the next primordium will form in the same file, which suggests that LRP formation may deplete the local auxin concentration in the vascular pole, lowering the probability of successive LRP forming close by. In loblolly pine, there exists a stepwise decrease in auxin-induced rooting response from root, hypocotyl, to epicotyl in young seedlings. Competence to organize root meristems is normally confined to cells in pericycle or vascular parenchyma located centrifbgal to primary xylem poles. Auxin can induce cellular reorganization and cell division in all parts of the seedling, but does not always promote the organization of root meristems in epicotyls. Expansins were found to be auxin-inducible while searching for auxin-induced genes specific to adventitious rooting. To investigate the localization and time course of expansin expression during adventitious and lateral root formation, 25- day-old hypocotyls, 50-day-old hypocotyls and epicotyls, and 10-day-old primary roots were treated with auxin at different concentrations. Non-radioactive in situ localization of expansin mRNA using digoxigenin-labeled probes was used to compare expansin expression at the cellular level in different parts of the seedling. Expansin expression was observed in the auxin-treated hypocotyl and epicotyl tissue, but no or a very weak signal was observed in the untreated tissue. In addition, the auxin-induced increase of expansin mRNA in 25-day-old hypocotyls and primary roots was highly localized to the region of the parenchyma from which adventitious roots will form. In the lateral rooting zone of primary root, strong expression, without auxin treatment, occurred in the pericycle cells prior to lateral root primordium organization. Different patterns of expansin gene expression in response to auxin were found between hypocotyl and epicotyl cuttings. Relatively strong and localized expression in vascular parenchyma of hypocotyls contrasts with relatively weak and diffuse expression in cortex cells in epicotyl cuttings. A preliminary Western blot, detected the expansin protein in hypocotyls at both 24 and 48 h after auxin treatment but not in epicotyls. Collective results suggest auxin-induced expansin expression may play a role in both lateral and adventitious root formation in loblolly pine seedlings

    Exponentially weighted particle filter for simultaneous localization and mapping based on magnetic field measurements

    Get PDF
    This paper presents a simultaneous localization and mapping (SLAM) method that utilizes the measurement of ambient magnetic fields present in all indoor environments. In this paper, an improved exponentially weighted particle filter was proposed to estimate the pose distribution of the object and a Kriging interpolation method was introduced to update the map of the magnetic fields. The performance and effectiveness of the proposed algorithms were evaluated by simulations on MATLAB based on a map with magnetic fields measured manually in an indoor environment and also by tests on the mobile devices in the same area. From the tests, two interesting phenomena have been discovered; one is the shift of location estimation after sharp turning and the other is the accumulated errors. While the latter has been confirmed and investigated by a few researchers, the reason for the first one still remains unknown. The tests also confirm that the interpolated map by using the proposed method improves the localization accuracy

    A centering correction method for GNSS antenna diversity theory and implementation using a software receiver

    Get PDF
    GPS is performing well in open sky situation. However, severe attenuation or blockage of signals by high buildings may leads to an insufficient number of received satellites. Antenna diversity scheme is viewed as a method to alleviate signal attenuation and enhance the performance of GNSS positioning in the harsh environments. This paper introduces an antenna diversity system, composed of two spatially separated antennas. If relative geometry of two antennas is known, the carrier phase measurement outputs from these two antennas can be combined with Centering Correction Method (CCM). Even each antenna may not able to acquire more than four satellites this antenna diversity system can still precisely estimate each antenna’s location with centimeter-level accuracy, as long as the sum of the captured satellites by two separate antennas is no less than four

    A Review of the Engineering Role of Burrowing Animals: Implication of Chinese Pangolin as an Ecosystem Engineer

    Get PDF
    Ecosystem engineers are organisms that alter the distribution of resources in the environment by creating, modifying, maintaining and/or destroying the habitat. They can affect the structure and function of the whole ecosystem furthermore. Burrowing engineers are an important group in ecosystem engineers as they play a critical role in soil translocation and habitat creation in various types of environment.However, few researchers have systematically summarized and analyzed the studies of burrowing engineers. We reviewing the existing ecological studies of burrowing engineer about their interaction with habitat through five directions: (1) soil turnover; (2)changing soil physicochemical properties; (3) changing plant community structure; (4) providing limited resources for commensal animals;and/or (5) affecting animal communities. The Chinese pangolin (Manis pentadactyla) is a typical example of burrowing mammals, in part (5), we focus on the interspecific relationships among burrow commensal species of Chinese pangolin. The engineering effects vary with environmental gradient, literature indicates that burrowing engineer play a stronger role in habitat transformation in the tropical and subtropical areas.The most common experiment method is comparative measurements (include different spatial and temporal scale),manipulative experiment is relatively few. We found that most of the engineering effects had positive feedback to the local ecosystem, increased plant abundance and resilience, increased biodiversity and consequently improved ecosystem functioning. With the global background of dramatic climate change and biodiversity loss in recent decades, we recommend future studies should improving knowledge of long-term engineering effects on population scale and landscape scale, exploring ecological cascades through trophic and engineering pathways, to better understand the attribute of the burrowing behavior of engineers to restore ecosystems and habitat creation. The review is presented as an aid to systematically expound the engineering effect of burrowing animals in the ecosystem, and provided new ideas and advice for planning and implementing conservation management

    Apomixis for no bacteria-induced thelytoky in Diglyphus wani (Hymenoptera: Eulophidae)

    Get PDF
    In Hymenoptera species, the reproductive mode is usually arrhenotoky, where haploid males arise from unfertilized eggs and diploid females from fertilized eggs. In addition, a few species reproduce by thelytoky, where diploid females arise from unfertilized eggs. Diploid females can be derived through various cytological mechanisms in thelytokous Hymenoptera species. Hitherto, these mechanisms were revealed mainly in endosymbiont-induced thelytokous Hymenoptera species. In contrast, thelytokous Hymenoptera species in which a reproductive manipulator has not been verified or several common endosymbionts have been excluded were paid less attention in their cytological mechanisms, for instance, Diglyphus wani (Hymenoptera: Eulophidae). Here, we investigated the cytological mechanism of D. wani using cytological methods and genetic markers. Our observations indicated that the diploid karyotypes of two strains of D. wani consist of four pairs of relatively large metacentric chromosomes and one pair of short submetacentric chromosomes (2n = 10). The arrhenotokous strains could complete normal meiosis, whereas the thelytokous strain lacked meiosis and did not expulse any polar bodies. This reproductive type of lacking meiosis is classified as apomictic thelytoky. Moreover, a total of 636 microsatellite sequences were obtained from thelytokous D. wani, dominated by dinucleotide repeats. Genetic markers results showed all three generations of offspring from thelytokous strain maintained the same genotype as their parents. Our results revealed that D. wani is the first eulophid parasitoid wasp in Hymenoptera whose thelytoky was not induced by bacteria to form an apomictic thelytoky. These findings provide a baseline for future inner molecular genetic studies of ameiotic thelytoky

    Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review

    Get PDF
    Aqueous zinc ion batteries (ZIBs) are regarded as one of the most ideally suited candidates for large-scale energy storage applications owning to their obvious advantages, that is, low cost, high safety, high ionic conductivity, abundant raw material resources, and eco-friendliness. Much effort has been devoted to the exploration of cathode materials design, cathode storage mechanisms, anode protection as well as failure mechanisms, while inadequate attentions are paid on the performance enhancement through modifying the electrolyte salts and additives. Herein, to fulfill a comprehensive aqueous ZIBs research database, a range of recently published electrolyte salts and additives research is reviewed and discussed. Furthermore, the remaining challenges and future directions of electrolytes in aqueous ZIBs are also suggested, which can provide insights to push ZIBs’ commercialization
    • …
    corecore